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ABSTRACT

We discuss the nonlinear eigenvalue problem

Su" + Af(x,u) - 0 -1 < x < 1, A 0

vh.e u'-1) = u'(+) - 0, 0 S u(x) S 1

f(x,u) - u(1 - u)[u - a(x)]
and

1a(x) - 1-r(x) + h c 0, he a

with r(-x) - -r(x) and r' 0.

?or e - h - 0 the solution of Problem P is well known, and every solution, except
u - 0 and u - I is unstable with respect to the corresponding parabolic problem.

We show how the branch of increasing solutions changes as e becomes positive, and
acquires a bifurcation point (1,u) beyond which this branch becomes stable. If h
becomes nonzero as well, this bifurcation point -a shown to break up.

As an illustration we consider an example in which the branch of increasing solutions
can be computed. Here

=fx -u 0 s x < a(x)
f(x,u)

u a(x) <u 1

where alx) is given above.
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SIGNIFICANCE AND EXPLANATION

Consider a population, consisting of three genotypes: AA, Aa and a&,
.* which tend to disperse through a habitat 11 and possess different survival

fitnesses. Let u(x,t) denote the fraction of allele A amongst the total
number of alleles in the population at a point x in the habitat, at time
t. Then, according to a model due to Fisher and Haldane, the evolution of
u is described by the nonlinear diffusion equation

a t - DAu + f(x, u) x e $, t > 0

in which D is a positive constant, measuring the rate of dispersal and f a
function determined by the relative fitness of the genotypes. If the fitness
of the heterozygote Asa is lower than that of either of the hofozygotes,
then f is of the form given in the Abstract. When A - (-I,1) and we
assume no-flux boundary conditions we arrive at Problem P, with A - I/D.

In this paper we shall assume fx ? 0, and study the set of
nondecreasing equilibrium solutions, and their stability properties. In
particular, it is shown that if an equilibriu solution is decreasing on some
Interval, then it must necessarily be unstable.

Problem P contains three parameters, X: measuring the relative
importance of dispersal and selection, C: measuring the gradients in the
selection pressure fx and ha measuring the departure from the symmetry
property

" (*) f(-x,1 - u) - -f(x,u) x e (-1,1), u e [0,1]

We find that If (M) is satisfied (h - 0), and fx 9 0, there exists

a branch of increasing solutions *(x,X) such that

-x,A) - 1 - *(x,X) x 6 (-1,1]

which is unstable for X mll and stable for X large, the exchange of
% stability being achieved at a bifurcation point on this branch. This

singularity disappears when h becomes nonzero, and the symmetry relation is
no longer valid. Biologically, this means that for small dispersal rates,
stable equilibrium solutions exist, which mirror the selective advantages in
the habitat.

The responsibility for the wording and views expressed in this descriptive

summary lies with MRC, and not with the authors of this report.
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ON A NONLIFEAR EIGENVALUE PROBLEM

OCCURRING IN POPULATION GENETICS

Ph. Clment and L.A. Peletier

1. INTRODUCTION

In a previous paper [8] the second author considered the following

nonlinear eigenvalue problem

ru'? + Xf(x,u) -0 -1 < x < 1 X Z 0

u'(-1) = u'(1) 0

where

(1.1) f(x,u) - u(i-u)(u-a(x))

and a satisfies

Al aEC 1 ([-1,1])

A2 0 < a(x) < I for -1 - x 1 1

This problem arises in population genetics as a sinplle diffusion model for the

prop.tgation of genetic m iterial in a population, see (5,6]. The solitions of (P)

are stationary solutions of the nrohlem

Delft University of Technology, Delft, The Netherlands.

University of Leiden, Leiden, The Netherlands.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.



. ()I ut = uxx + Af(x,u) -< x < I t > 0

(D) to'u (t-1) - ux(to1) - 0 t 1 0 .
x x

Since u represents a fraction of alleles in the population, we are only inter-

ested in solutions u taking values in [0,1] ; u n 0 and u w I are (trivial)

solutions of (P), and they are both asymptotically stable . As a consequence of

the implicit function theorem one easily proves that the branches f(X,O)IXCR + )

and {(X,1)JIEU + ) do not have a bifurcation point in R x C([-1,1]) where

C([-1,11) denotes the space of continuous functions on [-1,1] equipped with

* the supremum norm.

When a'(x) 0 , x E [-1,1] , the trivial solutions are the only stable

ones [1]

When a'(x) < 0 , x C [-1,1] , it was proved in [7 ,Theorem41 and (5] that for

sufficiently large values of X , there does exist at leas one non-trivial

solution which is stable. (We prove in Appendix B that stable solutions have

to be increasing).

In this paper, we are interested in the question as to how these stable

solutions emerge when a(x) changes from a constant to a non-constant function.

To be specific we shall write

(1.2) a(x) - i(1-cr(x)+h) , c,h E R

where r(-x) = -r(x) , x E [-1,1]

In the example given in [81, where h 0 , r(x) 1 on (0,1] and c C (0,1)

it was shown that the stable solutions are part of continuum in R+xC([-1,1])

which extends all the way back to X - 0 , and that (X,u) converges, to (0,J)

as X t 0 . In addition it was shown in [], that, under the assunptions Al, A2,

for A small, there exists a unique curve C of nontrivial unstable solutions

* For this choice of r the function a does not satisfy the condition Al, but
this has no effect on the result.
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u(X) , bifurcating from (O,a) where

+1

(1.3) a* = a(x)dx
,i -1

Thus, in the example considered above, in which f haq the symetry

property:

(1.4) f(-x,l-u) - -f(x,u) x E E-1,1] , u E (0,1]

(that is f is antisynmetric with respect to the point (0,) in the

(x,u)-plane), the branch of nontrivial solutions C extends to infinity and

eventually the solutions of this branch become stable. As a consequence it

was shown that C contains a bifurcation point (1,u)

In this paper we shall extend these results to more general functions

r , and discuss the dependence of (X,u) on .

If h becomes non zero and f no longer has the symmetry property (1.4),

we prove some partial results which suggest that the continuum C breaks up at

the point (!,u) . We conjecture on the basis of these results that when f

fails to have the symmetry property (1.4), then C does not contain any stable

solution.

We conclude this paper with an example of a different type of function f

!.: ) -u -0 1 u < a(x)
1-u a(x) < u ,

where a(x) is given by (1.2) and r(x) - x . In this example the branch C

can be computed explicitely, both when 1i is zero and when h is not zero.

We gratefully acknowledge S. Hastings for suggest-Ling this example.

-3-



2. THE CONTINUUM C

+1
Define the function J(u) - f f(x,u)dx , where f is given by (1.1).

"" Then

(2.1) J(u) =0 -u C (O,a,)

where a is.defined in (1.3). Recall that by A2, 0 < a < 1 . In this section we

*.- shall show that from the point (0,a) emanates a branch of nontrivial solutions of

(P). We shall denote it by C. By a solution of Problem (P) we shall mean a pair

+ 2 2
(,u) C ]k+ x C ([-1,1]), which satisfies (P), where C ([-1,1]) is the space of twice

continuously differentiable functions on (-1,1] equipped with the usual norm.

THEOREM 1. Suppose a satisfie8 Al and A2. Then there exists a maximal

connected set of nontrivial solutions C in + C C 2([-I1,1]) , whose projection

on is unbounded, with the properties:

(i) lim(Xu) - (0,a) in R xC 2 ((-1,1)

X+O
(ii) There exists XO0 > 0 such that for A C (0, OA) there exists one and

only one nontrivial solution (Au) , and (X,u) belongs to C

(iii) If (A,u) E C , then 0 4 u(x) < 1 , x E [-1,1]

(iv) If a satisfiee in addition

A3 a'(x) s 0 x E [-1,11

a not a constant, then (Au) f- C implies u'(x) > 0 , x E (-1,1)

(u is a "oline").

e REMARK. For A E (0,A U ) , the function A -* u(A) C 2((-,1]) is analytic.

-4-
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PROOF. To prove (i) and (ii) we shall rewrite Problem (P) such that we can.

apply Theorem A from the Appendix. Observe that if (X,u) is a solution
+1

of Problem (P) and X > 0 , then f f(xu(x))dx - 0. Therefore solutions
-1

of Problem (P) with X > 0 are also solutions of Problem (PI) and conversely:

+1

(P1) 
u'() {f(x,u)-0 

f(x,u(x))dx

f f(x,u(x))dx 0

Let k be such that if g E C([-1,11) with f g(x)dx - 0 and
+1 -1 +1

u(x) : f k(x,y)g(y)dy , then u satisfies (i) f u(x)dx = 0 and
-1 -1 +1

(ii) -u" - g , x E (-I,+I) and u'(±1) - 0 . Let 0 denote i f u(x)dx
-I

and y - B - I , where a is defined in (1.3), and v u - 8 , Then we can

rewrite Problem (P1) as

+1

v(x) = X f k(x,y)f(y,v(y)+a+y)dy
(P2) +1 -1

f(x,v(x)+a+y)dx 0
-1

Now we define the Banach space

+1

E :- {vEC([-1,1]) iv(x)dx=O} x R

-1

equipped with the norm ll(vy)41 = max Iv(x)I + Iyl , and the map
xE[-1,1]

F := Rx E . E by

+1

v- f k(.,y)f(y,v(y)+a+y)dy:1 )(1;(v,Y)) = +1 -I
" S (x,v (x)-ra+y)dx.

'j -1

~-5-
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Plainly Problem (P2) can be rewritten as

(3) F(A;(v,y)) -0 , F F. R, (vy) E E

We are now in a position to apply Theorem A of the Appendix and we shall prove

that the conditions a) to f) are all satisfied. a) follows from the definition

of F and a . b), c) and f) with F analytic are standard. To prove d),

one computes the partial Frichet derivative of F with respect to (vy)

' at (0,(0,))

F' 0;co(o)) - f{ 1 f (x,a)[CQ(x)+9]dx
4;,, -1 u

+1
where (9,?) E E . Since f fuCX,a)dx 2G(1-cs) 0 0 it follows that

-1
FS (0(0,0)) E Isom(E,E) . It remains to prove e). First observe that as a

consequence of (2.1), F(O,(v,y)) - 0 if and only if v - 0 and

y E {-a,O,1-a . Then one observes that the component of solutions in Rx E

"* which contains (0,-a) (resp. (0,l-a)) is exactly {( ,-a)) CIO (resp.

" ((0,1-c)[ItlR) since there is no bifurcation on these lines. thus the component P

of solutions in R x E which contains (0,0) does not meet (0) x E , and

condition e) is satisfied. It follows from Theorem A that Problem (P3) possess

a maximal connected set of solutions in + x E which is unbounded in R+ x E

and such that

• .lim (A,(v,y)) = (0,(0,0))

"+0

It is easy to verify that v E C 2([-1,1]) . Next we define

+ 2C :- {(A,u)tRXC ([-1,1])lu-v+y+a with (X,(v,y))CV) . C is an unbounded

maximal connected set in R+ Y C(-1,1]) ; moreover (,,u) i. C are nontrivial

-6-



solutions of (P). Thus since the R'xC([-1,1]) and the R x C2([-1,1])

topology are the same on the set of solutions of (P), C is a maximal connected

set in 3kX C2([-1,1]) such that lim(X,u) = (0,a) in Rx C2 (-1,1])' (Xu) €C

X40

This proves part (i) of Theorem 1.

* Part (ii) follows from f) of Theorem A . Next we prove that (X,u) E C implies

0 < u(x) < 1 , x E [-1,1] . It is sufficient to prove max Iu(x)-l < i
xF[-1,1]

for (X~u) E C . First observe that for X small, max lu(x)-l < i
: . x [-1,1I]

with (Xu) E C . Assume that for some (X,u) E C , max tu(x)-1I = I
x[-1,1]

From the boundary conditions, it follows that there exists E E [-1,1] such

* that u'() = 0 ,.u(&) = 0 or 1 But the function u(x) j 0 or a 1 would

*i be a solution of the initial value problemt - A ff(x,v)
() v( ) = u

as well as the function u which is not constant. This contradicts the unique-

ness of the initial value problem (IP). We have then that (X,u) f. C implies

max Iu(x)-'1J - I . One concludes by observing that the function
xE [-1,1]
(Xu) E C - max lu(x)-jl is continuous from ]Rx C([-I,1]) into I

xE[-1,1]
* and that C is connected in .R xc([-1,1]) . This proves part (iii).

As a consequence we prove next that ProjR + C is unbounded. We have
.- +1

0 e v(x) + Y + a < I for all (X,(v,y)) E V . Since f v(x)dx -. 0 , we
V -1

V also have 0 < y.+ a < 1 , for all (X,(v.y))EV and thus sup ll(v,y)I <

hence Proi+ P = ProjR+ is hounded, since V is unbounded in R+ x E

-7-
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Finally we prove (iv). For (X,u) C C , we define P D(X,u) to be the

o*.' principal eigenvahue of the problem

{ -XE (.,u)h - 11h -1 < x <1
U

. h(-1) = h(+l) =0

For (X,u) E C and X small it is easy to see that XD(,u) > 0 . But

*#D(X,u) 0 0 when (X,u) E C • Indeed w = u' satisfies:

(2.2) w U Xu(1-u)(-a') a 0
i w(-1) =WM1 0

+1
Suppose D (X u) = 0 . Then f f hdx should be zero where h denotes

S-1

the principal eigenfunction chosen positive and normalized by max h(x) - I
xE[-1,1]

Since a is not a constant, this is impossible. As in part (iii) we conclude

that UD(A,u) > 0 on C by observing that p D is a continuous function of

(X,u) and C is connected. Since the operator in the left-hand side of (2.2)

is coercive, and the right-hand side is nonnegative (not identically zero),

then u'(x) = w(x) > 0 , x E (-1,1) . This completes the proof of Theorem 1.

3. THE SYMMETRIC CASE

Throughout this section we set h 0 . Thus

a(x) = Il-cr(x))

"and we assinne that r satisfies

HI r(-x) = -r(x) x c [-1,1]

112 r'(x) >. 0 on [-1,i1 and r'(0) > 0

i % • ,-8-



Thus a - , and by Theorem 1 the continuum C "emanates" from (O,)

For convenience we define v = 2u - I . Then Problem (P) is equivalent with

V' + xg(x,v) = 0 -1 < x < 1
(P') J

'-v'(-1) v'(1) 0

where

g(x,v) I 2(-v2 )[v+Er(x)]

Suppose ** is a solution of the problem

(P") {v"+ Xg(xv)= 0 0 x x <

V(O) =O VIM)-O0

Then due to the sysmmetry property of r given in HI, the function

f(x)
:.' (x) = { *(-~c,,x) -0 5 x S< 0I

is a solution of Problem (P'), and *(x) = I(1+(x)) is a solution of Problem

(P). Since the function g has the property

Sg(x,v) > g,,(x,v)v 0 < x 5 1 0 < v < I

the following facts about Ptoblcm (P") are well-known:

-9-
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PROPOSITION 2. Lot r satisfy hypothesis HI and H2. Then

(i) for each X > 0 * Problem (P") has a unique positive solution 0*(X)

(ii) **(X) is increasing and concave;

(iii) the map X-i 0* (A): R+ C2 ( [0,1]) is analytic

(iv) 0 x I < X2 implies 0*(Xl)(x) < **(A2)(x) for x E (0,1]

2
(v) **(X) * 0 as X +0 in 0 ([0,11).

(vi) lim **(X)(x) = 1 for eacA x E (0,1]

They are an easy consequence of the fact that the principal eigenvalue

1 (A) of the linearized problem

h" - Xgv(x,.*(x))h = ph 0 < x < 1

h(O) = h'(1) = 0

is positive for all X > 0

PROPOSITION 3. Let rI and r2  satisfy hypothesis Hi, H2 and let and

be the solutions of Problem (P"), corresponding to r1  and r2  . Suppose

r1 > r2  then 0*(x) > f*(x) for 0 < x S 1

PROOF. Write f.(x,u) u(l-u)(u-aW(x)) where a. = j(1-cr.) i = 1, , Then
3. 1 . 1 1

+ Af.,,) = f2.,, - Af1 (.,, 1 ) =

- icA, I(1 -I)(r2-r1) 1 0 . (1 0)

-10-
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* 2 Hence ** is a supersolution of the problem

{ v" + A f2(.,v) = 0

v(O) = 0 v1() 0 0

Since v(x) a 0 is a subsolution it follows that there exists a solution w

such that 0 S w f , and because neither 0 nor f are solutions,

0 < w(x) < #*(x) for 0 < x 9 1 . Because Problem (P") has only one solution

by Proposition 2, w = and hence *(x) < OW for 0 < x I

COROLLARY. Let r satisfy HI and H2 and let X E U+ be fixed. Denote the solution

of Problem (P") by #*(e) . Then e a 2 implies **(.i) #*( 2 ) •

We now return to Problem (P). We can deduce from Proposition 2 that

.- "" C: :- {(L,*(A)) iX>O}

is an analytic curve of solutions with the symmetry property

(3.1) ( -x)= - W( )

such that

M(Q) -* as X 4 0 in C2 ([1-1]) 1

L-11-
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.. 7. 7.

and

{ I if x ( (0,1)
(A) - as A

0 if x 1. (-1,0)

This means, in view of Theorem 1, that C is the subcontinuum of C consisting

of the solutions with the symmetry property (3.1). Observe that all increasing

solutions satisfying (3.1)'belong to C.

In the following theorem we investigate the sign of the eigenvalue vk()

of the linearized problem

*" (Ev -h" - Xf(.,*() h - y(X)h -1 < x < 1

.h'(-1) - h'() - 0

where (X,,(1)) i Cs • If they are all positive for some (XI()) t. C , we

know that O(X) is asymptotically stable [3] and if one of them is negative

that O(X) is unstable.

Let the eigenvalues vk be ordered so that v1 < V2 < V3 < .... Then due to

the symmetry of f , V2h 1- h for h - 1,2,... . We already know that

U" W > 0 for all X > 0 Hence Vk a V2 ' "l > 0 for all k k 2 . Thus it

" remains to find the sign of v

THEOREM 4. Let (X, (A)) C Cs . Then there excists ) andA (O<X X <)
5 1 2 12

ow~h that

W 0 < X < X! impties vt(X) < 0

(ii) 2 < X < impl'ies vl(A) > 0

where v1 (A) d,nates the principal eigenvalue oJ tLhc Prob7,m (EV).

PROOF. (i) This part was proved in [6].

-12-
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(ii)'We begin with tLe observation that if r M i - 1,2 satisfy 111, H2 and

r(1) > r(2) on ( ] , then the principal eigenvalues v (1) and ( ()

satisfy the inequality:

:(3.2) V M) > V (A) for all X > 0.

. This follows from the fact that if r > r then by Proposition 3,
.- (1) (2)

( x) > f (x) for all x E (0,1] , and hence as follows from elementary
copuatonf() .1 ( (2)

computation f (1)(x., W(x))< f(2) (x, x)) for all x E[-1,O) U (0,1]Su u
The variational characterization of the principal eigenvalue of Problem EV

now gives the inequality (3.2). In view of the assumptions on r , there exists

a constant 6 > 0 such that

2
xr(x) k 6x for -1 S x < I

It follows from the above observation that it is sufficient to prove part (ii)

for the function r(x) - x -I S x S 1, where the constant 6 has been

absorbed in the factor e

Let h be the principal eigenfunction of Problem EV normalized so

that h > 0 on [-1,1] and max h -1. Then1,"(-1;1] 1

(3.3) Vlh r-h"- Xf1))1
1 1 1

If we multiply this equation by f'(X) and integrate over (-1,1) we obtain,

using the boundary conditions for h and * , and dividing by X

-13-



(3.4) x1 Vi(X *'dx - f(.-.O00) h1 +

+1 I

+ f (..)hdx- -2f(11WG)(1)) h(1) +

I-
":,# ) h- I h I

+1

+ C J (,)(1-.i:x))h dx

0

Here we have also used the symmetry properties of f,* and h • Integrating

(3.3) over (-1,1) and dividing by X we obtain

+1 1

X- V1 (1) J h dx "-2 J fu(' 5()) h' dx -

-1 0

= -2 (A,)(1-( dX))hldX + 2 (2(,)-1)(f(,)-a)hldx

o 0

If we multiply this equality by and add it to (3.4) we obtain

+1
X -I v1(0) J. (*'+I)hIdx - -2f( 1,O(1))h1 (1) +

#-,

+ C f (2-(X)-l)()-a)h 1dx

0

- enWe assert that ha(x) 9 h (1) for 0 S x S 1 . Accepting this for the

moment we find that

+1
" v () f (f'+Jt)hIdx k h 1(1) 2f(1,f(X)(1) +

+C 2 -1

0

-14-
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By Proposition 2, .(X)(x) I 1 as X - uniformly on any interval [,I]

with 0 < <1 Hence

lir {-2f( I )(I))+i I 2(X)- (()-a

- ftia~ixui(+ f x X H (+)
0

C (1-a)dx - + + f xdx) = Ri+. > 0

""b 0

Because the coefficient of vl()is positive for all X > 0 , there exists

a A 2 > 0 such that vI(A) > 0 for all X > X2

It remains to prove that h(x) k h(1) for 0 S x - 1 . One proof was

given in [8]. Here we give another proof. Observe that z - h is a solution of

the problem:

-z" -f z - Vz -Af hru 1 xu 1

:. z(O) - z() - 0

in which fx4.,*(A)) " ji[1-2f(X)] < . Note that by the definition of v

* the principal eigenvalue of the operator on the left hand side with Neumann

boundary conditions is zero. Hence with Dirichlet boundary conditions it is

positive, which implies that z < 0 on (0,1)' from which the result follows.

*" This completes the proof of the Theorem 4.

Since v1() ( 0 for all I > 0 if " 0 one would expect that

X' I2 as c * 0 . We shall show that this is indeed true. Define

C rsup{Av 1 w <0 on [O,X) s

Clcarly A* will depend on r. Thim, we sliall wcite X*(c)



THEOREM 5. X*(c)..w a8 c* 0

PROOF. Suppose to the contrary that there exist a sequence {e ) , e 0

as n and a constant M such that X*(c n ) < H , for all n Z I
,in

Then there is. a subsequence, still denoted by {c I , and X > 0 such that

I *(c X a-s e 0

1-',n n

Since v1  depends continuously on (XC), (X*(cn)) 0 for all n k 1

and therefore, by (3.4)

pI

f( ,(Xn)(1)i h In(1)) en = (Xn)(1-("n)) h (X )dx

0

where we have written X X*(c n ) . Hence
n n

fI1,(Xn)(1) h (An)(1)< f 1h1(X)dx S •
n \n S 2n 4 (n 8n

0

* By using the continuity of *(X)(1) and h (X)(1) we get by taking the limit

• ." as n -  :

hJ)(1 0

But *(X) E (0,J) and because a(1) E (0,h) , f(1,0(X)(1)) € 0 . Since

h '(X)(I) 0 , we have hj(X)(1) # 0 . Therefore we have a contradiction. This

completes the proof of Theorem 5.
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REMARKS. 1) If we define XA inf{X1>Olv(X)>O} then 0 < X 2 < X* < and

2 anati n the 0 2 A s f nd

V v(X*) - v (X*) -0 . Since v is analytic in A there are at most finitely

many zeros of v1  in the interval [X*,X*] , and there is at least one zero

where v changes sign. We denote by A the first zero of v1  where v1  changes

I*."" sign.-It follows as in [7], that (A,*(A)) is a bifurcation point from which

emanates" a. continuum of "nonsymmetric" solutions.

2) We are unable to prove that d-V(X) < 0 which would imply the transervality

* condition needed for the theorem of bifurcation from simple eigenvalue. Since
dn

v is analytic we only know that there exists an m E I such that -A) = 0
"" d2m+'l dX

ddA
for n S 2m and - ()>0•

do2m+crng th

3)Concerning the nonsymmetric case, we just mention the following result which

suggest that the branch of stable solutions becomes disconnected from

' C when h # 0

* PROPOSITION 6. There is no 6 > 0 such that there exists a C function

w: [-6,6) x (1-6,X+6) C ([-1,1]) which satisfies

.* i) w(O,I) C (-6,A+6)

ii) w(h,X) is a solution of Problem (P) for each h E (-6,6)

PROOF. If such a 6 would exist, then z --5h(O,X) would satisfy the

. equation:

z" - Af(.,f(3);h=O)z =4(X)(1-$(X))

* z'(-1) 1 0

This is obtained by differentiating (P) with respect to h , th 0

But" at 1,0()) , tl, cpritnipal eigenvalue v (X) vani:lhes and the corresponditig

-17-
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-+1

eigenfunction h1  does not change sign. Thus f 0(1-0)h dx 0 0 which
-1 +1

contradicts the necessaryorthogonality condition f 10(1-0)hldx - 0 in order~-1

to have existence of a solution z . This completes the proof of the proposition.

Note that

(3.5) l,h-O)x) > 0 x E (-1,1]

X < (next zero of v1(.) , possibly + .) and there is 6 > 0 such that

(3.6) ,h=0)(x) < 0 x E [-1,11 * - 6 < X <

"The existence of -L(,.) E C2[-1,1] follows from the implicit function

theorem and z - satisfies (E) for X E (1-61,1) U (1,T) for some

8" 1 > 0 . Since the right-hand side of CE) is positive, and the operator

on the left-hand side is coercive (V >0) for A E (AX) , (3.5) follows.

The inequality (3.6) is a consequence of the antimaximum principle [2].

4. AN EXAMPLE IN WHICH f(.,u) IS PIECEWISE LINEAR

In this section we shall assume that f(xu) has the following form

{ u 0 :S u < a(x)

f(x,u) - 0 U - a(x)

1-u a(x) < u S I

where

(4.1) a(x) :m A(1-ex4h) 0 < c < I , Ihi < minfc,l-c).

-18-
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Thus f is not continuous in u but it still has the properties

f(x,O) - f(x,1) - 0

f(x,u) < 0 for x E (-1,1) , 0 < u < a(x)

f(x,u) > 0 for x E (-I,1) , a(x) < u <

We consider the problem:

Find (A'u) E x W2 , (-l ) such that

- f(.,u) , u' > 0 on (-1,1)

u'(-1) - u'(+1) - 0

Thus, u oatisfies

(4.2a) -Ulf -XU if u(x) < a(x)

(4.2b) -u" W ,(1-u) if u(x) > a(x)

Because u is increasing and a is decreasing there exist a unique

E (-1,1) such that u(x) < a(x) on [-1,C) and u(x) > a(x) on (,1]

Thus by (4.2ab) and the boundary conditions

u(x) -a cosh V*,(x.l) if. -1 S x -I

u(x) 1 1- 0 cosh V/X(x-1) if E x 9 1 ,

where a,8 C R.

-19-
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777

Since u E C ([-1,1]) we must impose at x - F the conditions

(4.3a) a cosh VX(F, i) - - 0 coshVA(F;-1)., a(F,)

(4.3b) a V. sinh VA(+1) a VX sinh X(C- I

Using the definition of a(Q) , and eliminating a and B , we obtain

. (4.4) (I+h-cF) tanh VX(F+1) + (1-h+cF) tanh V0(F-1) -0

This leads to

(4.5) sinh 2V F; (eF-h)sinh 2V

or, when we introduce the function,

sin ht if t 0:' { t
4: (t) :m=

1 if t-O,

" to

* I. THE SY~METRIC CASE (h=O)

Equation (4.6) now reduces to.

(4.7) F{(2Ar)-et(2/A)} 0

-20-



Plainly, ( = 0 is a solution for all A > 0 . The corresponding values of a

and 8 can be computed from (4.3a). They are

a - 8 1/(2 cosh VA)

Thus, there exists a continuous branch of symmetric solutions.

Other solutions of (4.7) must satisfy

(4 .8) P (X:- 0 (2V /) L £

where we have divided (4.7) by 90(2VA) . Because P has the properties

(i) P(X,t) - P(X,-t) for all t F. R

(ii) P(X,O) - 1/0(2A) ;

(iii) t (,t) > 0 for all t C R,-{O

it follows that (4.8) has exactly two solutions + Z(X,c) if and only if

c > 1/0(2V/)) , i.e. when A > XO(e) where 0(2V5JT€)) - I/C

0

-21-~
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The corresponding values of a and B can again be determined from (4.3a).

Thus, summarizing we have found

," 1. For each A > 0 , there exists exactly one symmetric solution, characterized
t
- - by C-0.

2. For A > AO(c) there exist exactly three solutions: the-symmetric one

(C-0) and two non-symmetric ones characterized by & =. C(X) . It is readily

I. seen from Fig. 1 that

{0 as e-I

0 as £40

* II. THE ASYMMETRIC CASE Wh#)

It follows from (4.5) that C -0 implies X -0 • Thus when > 0 , we

,. may divide by C , and solutions must satisfy the equation

' (4.9) P(O) = £ - h

We consider the case h > 0

One verifies that for each X > 0 , the function C P(CA) is strictly

- convex and even. Thus P(0,A) - 1/0(2V) is the minimum of P(tA)

The function C 4 - (h/C) is strictly increasing for C E [-1,0) 11 (0,1]

- Since by (4.1)

s + h < P(-I,X) 1 1

and

lim c- >- • P(O,X) - 1/,(2V/)

-22-
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there exists for each AL > 0 and h E (0,1-c) exactly one solution

F(X,h) E [-1,0) of equation (4.9). Since

.[PF;.X)-c+J -MA(F;,A) - < 0 for <; 0

the implicit function theorem implies that F as a function of X is smooth

and strictly decreasing.

For &; E (0,1] both the left-hand side and the right-hand side of (4.9)

are increasing in F;,but F P(F;,)) is strictly convex and F -0- (h/F;)

is strictly concave. Moreover, we have

i. P(F;,) 114'(2'A) > lrn (e- h
&;40 F+

and

P -,X 1 > c h by (4.1).

Thus equation (4.9) has zero, one or two solutions.

Observe that P as a function of X is strictly increasing, because

-P(F;,) -r-P(F;X) F25)F2V

where F(t) - t"(t/0(t) an&L

-2

- I~,)-2 (sinh 2t-2t) 0 for. t > 0.

-23-



d* For X~ < X (c) there is no solution since

inf P(C,X) > c > c h -sup (F.

Because P(E,)X) -~0 as X mand C (0,1) fixed, there exist two solutions

of (4.9) for X large. Remembering that 3P(&,.)/aX < 0 we conclude that

there exists a X* E (N -) such that there exists no solution of (4.8)

if )~A~ exactly one of X =X* and exactly two of X > X* .Since

[p x) -c p(x) < 0

- these solutions can be smoothly parametrized by E (0,1)

0

Fig. 2 The bifurcation diagram (h>0)

I For h < 0 the situation is entirely analogous. This case can be reduced

* to Lhe former by substituting It -h I and -- in (4.9).

-24-



APPENDIX A

In this Appendix we state and prove a version of a global function theorem which

was used in section 2. This variant is a slight extension of Theorem 6.2 of [9).

For the sake of completeness we give a nroof here.

THEOREM A. Let E be a real Banach space and let F: R x E * E satisfy

a) F(O,0) = 0

b) F is continuous

c) G: R x E * E defined by G(X,w) - w - F(A,w) maps bounded subsets of

R x E into relatively compact subsets of. E

d) F possess a partial Frdchet derivative with respect to w at (0,0)

dFw (0,0) and dF (0,0) C Isom(E,E)

e) If J denotes the set of solutions of

(1) F(X,w) 0 in R x E

and if D denotes the maximal connected subset of J which contains (0,0)

then

D fl ({O)xE) " (0,0)

Then D is unbounded in x E and in E x E.

f) If morcover F E C (K.E;E) then there exists 6 > 0, X0  > 0 and a

. C function X- z(A) E E such that (Au) E J and 1A1 > X0 , lull < 6

imply u - z'(M The function z is C (resp. analytic) whenever F is

Cm (rcsp. analytic).

-25-



PROOF. If the conclusion of the theorem does not hold, then either

C: C n (R+XE) or C := C n (R-xE) is bounded. Assume C+  bounded.

It follows from b) and c) that C is a compact metric space under the induced

topology from B x E . It follows from d) that (0,0) is an isolated solution

of (1) in (0) X E Since C+  is compact it follows from e) that there

exists a 6-neighbourhood of C in IR x E denoted by U such

u A (nOiNE) n J - (0,0) . Let K.:- n J where U denotes the closure of U

- in R x E Since U is bounded, U is bounded and thus U n J is totally

S•'bounded. U and J are closed, thus K is compact metric. By construction

aU n C+  0 . Hence by [9], there exist disjoint compact subsets

' A,B c K such that C+ :A, U n J c- B and K= A U B . Let 0 be a

- p-neighbourhood of A where p is less than the distance from A to B

and less than the distance from A to 31i Note that these distances

* are positive since. A is compact and B, U are closed, A n B 0 and

A n 3 = 0. Hence Cco , ao nJ i 0 0 is bounded and 0 n ({O}xE) (0,0)

o n ((X}xE) = 0 for X large enough. Define 0:= {uCEI(X,u)E0} . From

b) and c), it follows that the Leray-Schauder degree of F is well-defined on

0: d(F,O . For X large enough, d(F,O =0 since 0 0 . For X = 0

. d(F,OO) = index(F(O,.),O) = index(dFw(0,0),O) 0 since dF w(0,0) E Isom(E,E)

- But this contradicts the homotopy-invariance of the Leray-Schauder degree (see

SLemma 1.8 of [9]). Thus C is unbounded in R x E . Similarly C -is

_ unbounded in B- x E

* The last assertion follows directly from the local, implicit function theorem.

17".
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APPENDIX B

The aim of this Appendix is to prove that stable stationary solutions of (D)

are increasing when a is nonincreasing. This generalizes an earlier result

of Chafee [1] . it is known that if (X,u) is a stable stationary solution

of (D), then the principal eigenvalue v1  of .(EvN)

(,"{ -h" f (.,u)h = vh
h'(-1) - h'(1) 0

is nonnegative. Thus the principal eigenvalue of (EVD)

{-h" f f(,u)h -vDh
h(-l) = h(1) - 0

is strictly positive: VD,1 V 1 V 0

D,1

PROPOSITION. Let a satij y A1,A2 and let

A3' a'(x) ;'O x.l' [-1,11

Let (Xu) be a stable solution of (P) satisfing 0 5 u(x) 5 1 , x C -I.

A > 0 . Then either u is identically constant, u 0 u a I or, when a

is not a constant, u i8 strictly increasing.

PROOF. v u' satisfies

,V" - .u ),f )u(l-u)(-a') , 0u x

Sv(-1) - v(M) 0

-27-



Since v > 0 , the operator on the left-hand side is coercive. If u is not
D, 1

a constant, then it follows from the maximum principle that 0 < u(x) < ,

x C [-1,1] and thus the right-hand side is nonnegative (00). Then

u'(x) - v(x) > 0 on (-1,1) . If u is a constant it can only be a trivial

solution if a is not a constant, and,if a is a constant, and u - a , it is

easily seen to be unstable.

-28-
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20. ABSTRACT - cont'd.

f(x, u) = u(1 - u)[u - a(x)I

and

1
a(x) =-[l-er(x) + h > 0, h e R

2

with r(-x) = -r(x) and r' > 0.

For c = h = 0 the solution of Problem P is well known, and every solution,

except u = 0 and u = 1 is unstable with respect to the corresponding

parabolic problem.

We show how the branch of increasing solutions changes as e becomes

positive, and acquires a bifurcation point (X,u). beyond which this branch

becomes stable. If h becomes nonzero as well, this bifurcation point is

shown to break up.

As an illustration we consider an example in which the branch of increasing

-° solutions can be computed. Here

f x ) -u 0 < x < a(x)

u a (x) < u < 1

where a(x) is given above.

UM(1

> 0, h- 0
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